

Addition/Correction

Subscriber access provided by American Chemical Society

Biliverdin Reduction by Cyanobacterial Phycocyanobilin:Ferredoxin Oxidoreductase (PcyA) Proceeds via Linear Tetrapyrrole Radical Intermediates [*J. Am. Chem. Soc.* 2004, *126*, 8682–8693].

Shih-Long Tu, Alexander Gunn, Michael D. Toney, R. David Britt, and J. Clark Lagarias

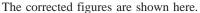
J. Am. Chem. Soc., **2005**, 127 (9), 3230-3231• DOI: 10.1021/ja059902w • Publication Date (Web): 15 February 2005 Downloaded from http://pubs.acs.org on March 24, 2009

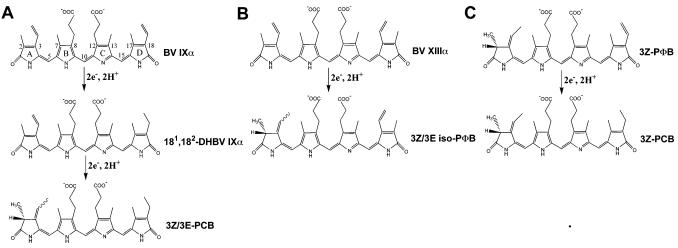
More About This Article

Additional resources and features associated with this article are available within the HTML version:

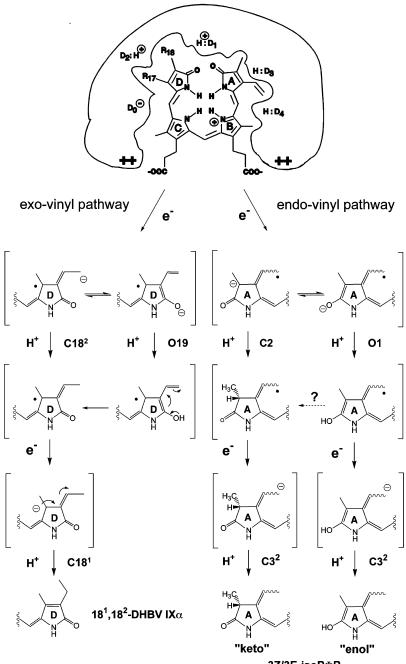
- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML





Biliverdin Reduction by Cyanobacterial Phycocyanobilin:Ferredoxin Oxidoreductase (PcyA) Proceeds via Linear Tetrapyrrole Radical Intermediates [*J. Am. Chem. Soc.* 2004, *126*, 8682–8693]. Shih-Long Tu, Alexander Gunn, Michael D. Toney, R. David Britt, and J. Clark Lagarias*


Page 8683. In Figure 1, the stereochemistries of the asymmetric carbon atoms in the structures of 3Z/3E-PCB, 3Z/3E-iso-P Φ B, 3Z-P Φ B, and 3Z-PCB should all be changed to the *R* configuration.

Page 8689. In Figure 7, the stereochemistries of the asymmetric carbon atom in species **6**, species **8**, and "keto" 3Z/3E-isoP Φ B should be changed to the *R* configuration.

Figure 1. Bilin substrates, intermediates and products of phycocyanobilin:ferrodoxin oxidoreductase (PcyA). PcyA mediates the four-electron reduction of biliverdin IX α (BV) to 3Z/3E-phycocyanobilin (PCB) (panel A) via the intermediacy of the two-electron reduced stable intermediate 18¹,18²-dihydrobiliverdin IX α (18¹,18²-DHBV). PcyA also mediates two electron reductions of biliverdin XIII α (BV13) to 3Z/3E-isophytochromobilin (3Z/3E-isoP\PhiB) (panel B) and of 3Z-P\PhiB to 3Z-PCB (panel C).

Figure 7. Proposed mechanisms for PcyA-catalyzed exo-vinyl and endo-vinyl group reductions. Substrates BV and BV13 bind to PcyA in a cyclic, porphyrinlike conformation. Protonation of the bilin substrate by proton-donating residue D_0 facilitates electron transfer from reduced ferredoxin. For the exo-vinyl pathway, the one-electron reduced neutral BV radical 1 (shown in two resonance structures) becomes protonated by residue D_1 on either carbon atom C18² or oxygen atom O19 to generate the cation radicals 2 or 3. Through intramolecular tautomerization, species 3 should readily convert to species 2. The second electron transfer produces the most long-lived intermediate 4, which upon protonation on the C181 position by residue D_2 yields 18¹,18²-DHBV. For the endo-vinyl pathway, the one-electron reduced neutral BV13 radical 5a (R_{18} = methyl and R_{17} = winyl) or the neutral 18¹,18²-DHBV radical 5b (R_{18} = vinyl and R_{17} = methyl becomes protonated by residue D_3 on either carbon atom C2 or oxygen atom O1 to generate the cation radicals 6 and/or 7. The second electron transfer produces the long-lived intermediate 8 and/or 9, which upon protonation on the C3² position by residue D_4 yields keto and enol forms of 3Z/3*E*-isoPΦB or 3*Z*/3*E*-PCB products.

JA059902W

10.1021/ja059902w Published on Web 02/15/2005